Page 1

NODE=S058

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The $\Xi_c^{\prime+}$ and $\Xi_c^{\prime0}$ presumably complete the SU(3) sextet whose other members are the Σ_c^{++} , Σ_c^{+} , Σ_c^{0} , and Ω_c^{0} : see Fig. 3 in the Note on Charmed Baryons just before the Λ_c^{+} Listings. The quantum numbers given above come from this presumption but have not been measured.

NODE=S058

Ξ'+ MASS

The mass is obtained from the mass-difference measurement that follows.

NODE=S058M NODE=S058M

VALUE (MeV)

DOCUMENT ID

NODE=S058M

2575.6±3.1 OUR FIT

$\Xi_c^{\prime+} - \Xi_c^+$ MASS DIFFERENCE

EVTS DOCUMENT ID TECN COMMENT

NODE=S058D NODE=S058D

VALUE (MeV) 107.8±3.0 OUR FIT 107.8±1.7±2.5

JESSOP

25

99 CLE2 $e^+e^-\approx \Upsilon(4S)$

NODE=S058215;NODE=S058

$\Xi_c^{\prime+}$ DECAY MODES

The $\Xi_C^{\prime +} - \Xi_C^{+}$ mass difference is too small for any strong decay to occur.

NODE=S058

Mode

Fraction (Γ_i/Γ)

 $\Gamma_1 = \Xi_c^+$

seen

 $\mathsf{DESIG}{=}1; \mathsf{OUR}\;\mathsf{EST}; \rightarrow \mathsf{UNCHECKED} \leftarrow$

$\Xi_c^{\prime+}$ REFERENCES

JESSOP 99

PRL 82 492

C.P. Jessop et al.

(CLEO Collab.)

NODE=S058 REFID=46550